LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Negative Regulator in Response to Salinity in Rice: Oryza sativa Salt-, ABA- and Drought-Induced RING Finger Protein 1 (OsSADR1)

Photo by nickkarvounis from unsplash

RING (Really Interesting New Gene) finger proteins play crucial roles in abiotic stress responses in plants. We report the RING finger E3 ligase gene, an Oryza sativa salt, ABA and… Click to show full abstract

RING (Really Interesting New Gene) finger proteins play crucial roles in abiotic stress responses in plants. We report the RING finger E3 ligase gene, an Oryza sativa salt, ABA and drought stress-induced RING finger protein 1 gene (OsSADR1). We demonstrated that although OsSAR1 possesses E3 ligase activity, a single amino acid substitution (OsSADR1C168A) in the RING domain resulted in no E3 ligase activity, suggesting that the activity of most E3s is specified by the RING domain. Additional assays substantiated that OsSADR1 interacts with three substrates-no E3 ligase acti and OsPIRIN, and mediates their proteolysis via the 26S proteasome pathway. For OsSADR1, approximately 62% of the transient signals were in the cytosol and 38% in the nucleus. However, transiently expressed OsSADR1 was primarily expressed in the nucleus (70%) in 200 mM salt-treated rice protoplasts. The two nucleus-localized proteins (OsSNAC2 and OsGRAS44) interacted with OsSADR1 in the cytosol and nucleus. Heterogeneous overexpression of OsSADR1 in Arabidopsis resulted in sensitive phenotypes for salt- and mannitol-responsive seed germination and seedling growth. With ABA, OsSADR1 overexpression in plants produced highly tolerant phenotypes, with morphological changes in root length and stomatal closure. The ABA-tolerant transgenic plants also showed hypersensitivity phenotypes under severe water deficit conditions. Taken together, OsSADR1 may act as a regulator in abiotic stress responses by modulating target protein levels.

Keywords: protein; oryza sativa; ring finger; sativa salt; finger

Journal Title: Plant and Cell Physiology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.