LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Origin of Carbonatites from Amba Dongar within the Deccan Large Igneous Province

Photo from wikipedia

There are disparate views about the origin of global rift- or plume-related carbonatites. The Amba Dongar carbonatite complex, Gujarat, India, which intruded into the basalts of the Deccan Large Igneous… Click to show full abstract

There are disparate views about the origin of global rift- or plume-related carbonatites. The Amba Dongar carbonatite complex, Gujarat, India, which intruded into the basalts of the Deccan Large Igneous Province (LIP), is a typical example. On the basis of new comprehensive major and trace element and Sr–Nd–Pb isotope data, we propose that low-degree primary carbonated melts from off-center of the Deccan–Réunion mantle plume migrate upwards and metasomatize part of the subcontinental lithospheric mantle (SCLM). Low-degree partial melting (∼2%) of this metasomatized SCLM source generates a parental carbonated silicate magma, which becomes contaminated with the local Archean basement during its ascent. Calcite globules in a nephelinite from Amba Dongar provide evidence that the carbonatites originated by liquid immiscibility from a parental carbonated silicate magma. Liquid immiscibility at crustal depths produces two chemically distinct, but isotopically similar magmas: the carbonatites (20% by volume) and nephelinites (80% by volume). Owing to their low heat capacity, the carbonatite melts solidified as thin carbonate veins at crustal depths. Secondary melting of these carbonate-rich veins during subsequent rifting generated the carbonatites and ferrocarbonatites now exposed at Amba Dongar. Carbonatites, if formed by liquid immiscibility from carbonated silicate magmas, can inherit a wide range of isotopic signatures that result from crustal contamination of their parental carbonated silicate magmas. In rift or plume-related settings, they can, therefore, display a much larger range of isotope signatures than their original asthenosphere or mantle plume source.

Keywords: large igneous; deccan large; igneous province; carbonated silicate; amba dongar; carbonatites amba

Journal Title: Journal of Petrology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.