LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

2′,3′-cAMP treatment mimics the stress molecular response in Arabidopsis thaliana

Photo from wikipedia

Abstract The role of the RNA degradation product 2′,3′-cyclic adenosine monophosphate (2′,3′-cAMP) is poorly understood. Recent studies have identified 2′,3′-cAMP in plant material and determined its role in stress signaling.… Click to show full abstract

Abstract The role of the RNA degradation product 2′,3′-cyclic adenosine monophosphate (2′,3′-cAMP) is poorly understood. Recent studies have identified 2′,3′-cAMP in plant material and determined its role in stress signaling. The level of 2′,3′-cAMP increases upon wounding, in the dark, and under heat, and 2′,3′-cAMP binding to an RNA-binding protein, Rbp47b, promotes stress granule (SG) assembly. To gain further mechanistic insights into the function of 2′,3′-cAMP, we used a multi-omics approach by combining transcriptomics, metabolomics, and proteomics to dissect the response of Arabidopsis (Arabidopsis thaliana) to 2′,3′-cAMP treatment. We demonstrated that 2′,3′-cAMP is metabolized into adenosine, suggesting that the well-known cyclic nucleotide–adenosine pathway of human cells might also exist in plants. Transcriptomics analysis revealed only minor overlap between 2′,3′-cAMP- and adenosine-treated plants, suggesting that these molecules act through independent mechanisms. Treatment with 2′,3′-cAMP changed the levels of hundreds of transcripts, proteins, and metabolites, many previously associated with plant stress responses, including protein and RNA degradation products, glucosinolates, chaperones, and SG components. Finally, we demonstrated that 2′,3′-cAMP treatment influences the movement of processing bodies, confirming the role of 2′,3′-cAMP in the formation and motility of membraneless organelles.

Keywords: response arabidopsis; camp treatment; camp; treatment; arabidopsis thaliana

Journal Title: Plant Physiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.