LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Autophagy is required for self-incompatible pollen rejection in two transgenic Arabidopsis thaliana accessions.

Photo from wikipedia

Successful reproduction in the Brassicaceae is mediated by a complex series of interactions between the pollen and the pistil, and some species have an additional layer of regulation with the… Click to show full abstract

Successful reproduction in the Brassicaceae is mediated by a complex series of interactions between the pollen and the pistil, and some species have an additional layer of regulation with the self-incompatibility trait. While the initial activation of the self-incompatibility pathway by the pollen S-locus protein 11/S locus cysteine-rich protein and the stigma S Receptor Kinase is well characterized, the downstream mechanisms causing self-pollen rejection are still not fully understood. In previous studies, we detected the presence of autophagic bodies with self-incompatible pollinations in Arabidopsis lyrata and transgenic A. thaliana lines, but whether autophagy was essential for self-pollen rejection was unknown. Here, we investigated the requirement of autophagy in this response by crossing mutations in the essential AUTOPHAGY7 (ATG7) and ATG5 genes into two different transgenic self-incompatible A. thaliana lines in the Col-0 and C24 accessions. By using these previously characterized transgenic lines that express A. lyrata and A. halleri self-incompatibility genes, we demonstrated that disrupting autophagy weakened their self-incompatible responses in the stigma. When the atg7 or atg5 mutations were present, an increased number of self-incompatible pollen were found to hydrate and form pollen tubes that successfully fertilized the self-incompatible pistils. Additionally, we confirmed the presence of GFP-ATG8a-labelled autophagosomes in the stigmatic papillae following self-incompatible pollinations. Together, these findings support the requirement of autophagy in the self-incompatibility response and add to the growing understanding of the intracellular mechanisms employed in the transgenic A. thaliana stigmas to reject self-pollen.

Keywords: thaliana; self incompatible; pollen rejection; self incompatibility

Journal Title: Plant physiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.