Efficient plastid transformation in Arabidopsis (Arabidopsis thaliana) requires genetic lines that are hypersensitive to spectinomycin due to the absence of a chloroplast acetyl-coenzyme A carboxylase (ACCase) encoded in the acetyl-coenzyme… Click to show full abstract
Efficient plastid transformation in Arabidopsis (Arabidopsis thaliana) requires genetic lines that are hypersensitive to spectinomycin due to the absence of a chloroplast acetyl-coenzyme A carboxylase (ACCase) encoded in the acetyl-coenzyme A carboxylase 2 (ACC2) nuclear gene. To obtain plastid transformation-competent oilseed rape (Brassica napus), we inactivated all nuclear encoded, chloroplast targeted ACCase copies using CRISPR-Cas9. B. napus (2n = 38, AACC) is a recent interspecific hybrid of B. rapa (2n = 20, AA) and B. oleracea (2n = 18, CC) and is expected to have at least two ACC2 copies, one from each parent. The sequenced genome has two ACC2 copies, one that is B. rapa-like and one that is B. oleracea-like. We designed single guide RNAs (sgRNAs) that could simultaneously inactivate both nuclear ACC2 copies. We expressed Cas9 from a chimeric egg cell promoter 1.2 (EC1.2p) known to yield homozygous or biallelic mutants in Arabidopsis in the T1 generation. To maximize the probability of functionally inactivating both orthologs in a single step, each of the two vectors carried four sgRNAs. Four T0 transgenic lines were obtained by Agrobacterium tumefaciens-mediated hypocotyl transformation. Amplicon sequencing confirmed mutations in ACC2 genes in 10 T1 progeny, in seven of which no wild-type copy remained. The B. napus T2 seedlings lacking wild-type ACC2 gene copies exhibited a spectinomycin hypersensitive phenotype, suggesting that they will be a useful resource for chloroplast genome transformation.
               
Click one of the above tabs to view related content.