The regulatory mechanisms that link WRKY gene expression to fruit ripening are largely unknown. Using transgenic approaches, we showed that a WRKY gene from wild strawberry (Fragaria vesca), FvWRKY48, may… Click to show full abstract
The regulatory mechanisms that link WRKY gene expression to fruit ripening are largely unknown. Using transgenic approaches, we showed that a WRKY gene from wild strawberry (Fragaria vesca), FvWRKY48, may be involved in fruit softening and ripening. We showed that FvWRKY48 is localized to the nucleus and that degradation of the pectin cell wall polymer homogalacturonan, which is present in the middle lamella and tricellular junction zones of the fruit, was greater in FvWRKY48-OE (overexpressing) fruits than in empty vector (EV)-transformed fruits and less substantial in FvWRKY48-RNAi (RNA interference) fruits. Transcriptomic analysis indicated that the expression of pectate lyase A (FvPLA) was significantly downregulated in the FvWRKY48-RNAi receptacle. We determined that FvWRKY48 bound to the FvPLA promoter via a W-box element through yeast one-hybrid, electrophoretic mobility shift, and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) experiments, and GUS (β-glucosidase) activity assays suggested that this binding promotes pectate lyase activity. In addition, softening and pectin degradation were more intense in FvPLA-OE fruit than in EV fruit, and the middle lamella and tricellular junction zones were denser in FvPLA-RNAi fruit than in EV fruit. We speculated that FvWRKY48 maybe increase the expression of FvPLA, resulting in pectin degradation and fruit softening.
               
Click one of the above tabs to view related content.