LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cold-induced [Ca2+]cyt elevations function to support osmoregulation in marine diatoms

Photo by pueblovista from unsplash

Diatoms are a group of microalgae that are important primary producers in a range of open ocean, freshwater and intertidal environments. The latter can experience significant long- and short-term variability… Click to show full abstract

Diatoms are a group of microalgae that are important primary producers in a range of open ocean, freshwater and intertidal environments. The latter can experience significant long- and short-term variability in temperature, from seasonal variations to rapid temperature shifts caused by tidal immersion and emersion. As temperature is a major determinant in the distribution of diatom species, their temperature sensory and response mechanisms likely have important roles in their ecological success. We have examined the mechanisms diatoms use to sense rapid changes in temperature, such as those experienced in the intertidal zone. We find that the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana exhibit a transient cytosolic Ca2+ ([Ca2+]cyt) elevation in response to rapid cooling, similar to those observed in plant and animal cells. However, [Ca2+]cyt elevations were not observed in response to rapid warming. The kinetics and magnitude of cold-induced [Ca2+]cyt elevations correlate with the rate of temperature decrease. We do not find a role for the [Ca2+]cyt elevations in enhancing cold tolerance, but show that cold shock induces a Ca2+-dependent K+ efflux and reduces mortality of P. tricornutum during a simultaneous hypo-osmotic shock. As inter-tidal diatom species may routinely encounter simultaneous cold and hypo-osmotic shocks during tidal cycles, we propose that cold-induced Ca2+ signalling interacts with osmotic signalling pathways to aid in the regulation of cell volume. Our findings provide insight into the nature of temperature perception in diatoms and highlight that cross-talk between signalling pathways may play an important role in their cellular responses to multiple simultaneous stressors.

Keywords: ca2 cyt; cyt elevations; cold induced; ca2; induced ca2

Journal Title: Plant Physiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.