LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ETHYLENE RESPONSE FACTOR 34 promotes secondary cell wall thickening and strength of rice peduncles.

Photo from wikipedia

Cellulose and lignin are critical cell wall components for plant morphogenesis and adaptation to environmental conditions. The cytoskeleton supports cell wall deposition, but much of the underpinning regulatory components remain… Click to show full abstract

Cellulose and lignin are critical cell wall components for plant morphogenesis and adaptation to environmental conditions. The cytoskeleton supports cell wall deposition, but much of the underpinning regulatory components remain unknown. Here, we show that an APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) family transcription factor, OsERF34, directly promotes the expression of the actin- and microtubule-binding protein Rice Morphology Determinant (RMD) in rice (Oryza sativa) peduncles. OsERF34 and RMD are highly expressed in sclerenchymatous peduncle cells that are fortified by thick secondary cell walls (SCWs) that provide mechanical peduncle strength. erf34 and rmd-1 mutants contained lower cellulose and lignin contents and thinner SCWs, while ERF34 over-expressing (OE) lines maintained high cellulose and lignin content with thicker SCWs. These characteristics impacted peduncle mechanical strength, i.e. reduced strength in erf34 and rmd-1 and increased strength of ERF34 OE plants. Taken together, our results demonstrate that the OsERF34-RMD cascade positively regulates SCW synthesis and mechanical strength in rice peduncles, which is important for yield, and provide a potential guide for improved peduncle breeding efforts in rice.

Keywords: strength; cell wall; ethylene response; factor; rice

Journal Title: Plant physiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.