We consider dual polynomials of the multi-indexed ($q$-)Racah orthogonal polynomials. The $M$-indexed ($q$-)Racah polynomials satisfy the second order difference equations and various $1+2L$ ($L\geq M+1$) term recurrence relations with constant… Click to show full abstract
We consider dual polynomials of the multi-indexed ($q$-)Racah orthogonal polynomials. The $M$-indexed ($q$-)Racah polynomials satisfy the second order difference equations and various $1+2L$ ($L\geq M+1$) term recurrence relations with constant coefficients. Therefore their dual polynomials satisfy the three term recurrence relations and various $2L$-th order difference equations. This means that the dual multi-indexed ($q$-)Racah polynomials are ordinary orthogonal polynomials and the Krall-type. We obtain new exactly solvable discrete quantum mechanics with real shifts, whose eigenvectors are described by the dual multi-indexed ($q$-)Racah polynomials. These quantum systems satisfy the closure relations, from which the creation/annihilation operators are obtained, but they are not shape invariant.
               
Click one of the above tabs to view related content.