LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Predicting Improved Daily Use of the More Affected Arm Poststroke Following Constraint-Induced Movement Therapy.

Photo by davidhofmann from unsplash

BACKGROUND Constraint-induced movement therapy (CI therapy) produces, on average, large and clinically meaningful improvements in the daily use of a more affected upper extremity in individuals with hemiparesis. However, individual… Click to show full abstract

BACKGROUND Constraint-induced movement therapy (CI therapy) produces, on average, large and clinically meaningful improvements in the daily use of a more affected upper extremity in individuals with hemiparesis. However, individual responses vary widely. OBJECTIVE The study objective was to investigate the extent to which individual characteristics before treatment predict improved use of the more affected arm following CI therapy. DESIGN This study was a retrospective analysis of 47 people who had chronic (>6 months) mild to moderate upper extremity hemiparesis and were consecutively enrolled in 2 CI therapy randomized controlled trials. METHODS An enhanced probabilistic neural network model predicted whether individuals showed a low, medium, or high response to CI therapy, as measured with the Motor Activity Log, on the basis of the following baseline assessments: Wolf Motor Function Test, Semmes-Weinstein Monofilament Test of touch threshold, Motor Activity Log, and Montreal Cognitive Assessment. Then, a neural dynamic classification algorithm was applied to improve prognostic accuracy using the most accurate combination obtained in the previous step. RESULTS Motor ability and tactile sense predicted improvement in arm use for daily activities following intensive upper extremity rehabilitation with an accuracy of nearly 100%. Complex patterns of interaction among these predictors were observed. LIMITATIONS The fact that this study was a retrospective analysis with a moderate sample size was a limitation. CONCLUSIONS Advanced machine learning/classification algorithms produce more accurate personalized predictions of rehabilitation outcomes than commonly used general linear models.

Keywords: induced movement; use; constraint induced; use affected; movement therapy; therapy

Journal Title: Physical therapy
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.