LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Measurement of entrance skin dose and absorbed dose to different organs in dual-energy X-ray absorptiometry scans using thermoluminescence dosimetry.

Photo from wikipedia

Thermoluminescence dosimetry is considered as an effective method in estimating the absorbed doses to organs in different imaging modalities. The present study focuses on dosimetry in dual-energy X-ray absorptiometry scans,… Click to show full abstract

Thermoluminescence dosimetry is considered as an effective method in estimating the absorbed doses to organs in different imaging modalities. The present study focuses on dosimetry in dual-energy X-ray absorptiometry scans, for patients, and phantoms in various imaging centres. The cubical LiF (Mg, Ti) thermoluminescence dosemeters were inserted inside the holes of the Rando phantom slabs, to measure the absorbed dose to different organs in the whole body and lumbar scans. According to the results the maximum entrance skin dose was found to be 202.06 μGy for Hologic discovery W, which uses the fan beam scanning mode. The Norland XR-800 device took the scans with a much lower dose, as it uses the pencil beam for scanning the patients. The results of the study show that the radiation beam type, patient thickness, imaging technique and scan time may affect the radiation dose received by patient.

Keywords: dual energy; ray absorptiometry; energy ray; thermoluminescence; thermoluminescence dosimetry; dosimetry

Journal Title: Radiation protection dosimetry
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.