LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unsupervised classification reveals consistency and degeneracy in neural network patterns of emotion

Photo by kaimantha from unsplash

Abstract In the present study, we used an unsupervised classification algorithm to reveal both consistency and degeneracy in neural network connectivity during anger and anxiety. Degeneracy refers to the ability… Click to show full abstract

Abstract In the present study, we used an unsupervised classification algorithm to reveal both consistency and degeneracy in neural network connectivity during anger and anxiety. Degeneracy refers to the ability of different biological pathways to produce the same outcomes. Previous research is suggestive of degeneracy in emotion, but little research has explicitly examined whether degenerate functional connectivity patterns exist for emotion categories such as anger and anxiety. Twenty-four subjects underwent functional magnetic resonance imaging (fMRI) while listening to unpleasant music and self-generating experiences of anger and anxiety. A data-driven model building algorithm with unsupervised classification (subgrouping Group Iterative Multiple Model Estimation) identified patterns of connectivity among 11 intrinsic networks that were associated with anger vs anxiety. As predicted, degenerate functional connectivity patterns existed within these overarching consistent patterns. Degenerate patterns were not attributable to differences in emotional experience or other individual-level factors. These findings are consistent with the constructionist account that emotions emerge from flexible functional neuronal assemblies and that emotion categories such as anger and anxiety each describe populations of highly variable instances.

Keywords: unsupervised classification; consistency degeneracy; emotion; anger anxiety; degeneracy

Journal Title: Social Cognitive and Affective Neuroscience
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.