LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and Validation of a Dynamic Risk Prediction Model to Forecast Psychosis Onset in Patients at Clinical High Risk.

Photo by thinkmagically from unsplash

The prediction of outcomes in patients at Clinical High Risk for Psychosis (CHR-P) almost exclusively relies on static data obtained at a single snapshot in time (ie, baseline data). Although… Click to show full abstract

The prediction of outcomes in patients at Clinical High Risk for Psychosis (CHR-P) almost exclusively relies on static data obtained at a single snapshot in time (ie, baseline data). Although the CHR-P symptoms are intrinsically evolving over time, available prediction models cannot be dynamically updated to reflect these changes. Hence, the aim of this study was to develop and internally validate a dynamic risk prediction model (joint model) and to implement this model in a user-friendly online risk calculator. Furthermore, we aimed to explore the prognostic performance of extended dynamic risk prediction models and to compare static with dynamic prediction. One hundred ninety-six CHR-P patients were recruited as part of the "Basel Früherkennung von Psychosen" (FePsy) study. Psychopathology and transition to psychosis was assessed at regular intervals for up to 5 years using the Brief Psychiatric Rating Scale-Expanded (BPRS-E). Various specifications of joint models were compared with regard to their cross-validated prognostic performance. We developed and internally validated a joint model that predicts psychosis onset from BPRS-E disorganization and years of education at baseline and BPRS-E positive symptoms during the follow-up with good prognostic performance. The model was implemented as online risk calculator (http://www.fepsy.ch/DPRP/). The use of extended joint models slightly increased the prognostic accuracy compared to basic joint models, and dynamic models showed a higher prognostic accuracy than static models. Our results confirm that extended joint modeling could improve the prediction of psychosis in CHR-P patients. We implemented the first online risk calculator that can dynamically update psychosis risk prediction.

Keywords: risk; risk prediction; model; dynamic risk; prediction; psychosis

Journal Title: Schizophrenia bulletin
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.