Dynamic functional connectivity (DFC) analysis of resting-state fMRI data has been successfully used to track fluctuations in arousal in the human brain. Changes in DFC have also been reported with… Click to show full abstract
Dynamic functional connectivity (DFC) analysis of resting-state fMRI data has been successfully used to track fluctuations in arousal in the human brain. Changes in DFC have also been reported with acute sleep deprivation. Here, we demonstrate that dynamic connectivity states (DCS) previously related to arousal are reproducible, and are associated with individual differences in sustained attention declines after one night of total sleep deprivation. 32 participants underwent two counterbalanced resting-state fMRI scans: during rested wakefulness (RW) and following total sleep deprivation (SD). They also completed the Psychomotor Vigilance Test (PVT), a sustained attention task that is highly sensitive to the effects of sleep loss. SD vulnerability was computed as the decrease in response speed (∆RS) and increase in lapses (∆lapse) in SD compared with RW. Dynamic functional connectivity analysis was conducted on rs-fMRI data. Connectivity matrices were clustered to obtain 5 prototypical DCS. We calculated the proportion of time participants spent in each of these DCS, as well as how often participants transitioned between DCSs. Relationships between SD vulnerability and connectivity metrics were then correlated. We recovered two DCS that were highly similar (ρ = .89-.91) to arousal-related DCS observed in previous work (high arousal state (HAS); low arousal state (LAS)). After sleep deprivation, the proportion of time spent in the LAS increased significantly (t29=3.16, p=.0039), while there was no significant change in HAS (t29=-1.43, p=.16). We observed significantly more state transitions in RW compared with SD. Change in LAS and HAS across sleep conditions correlated significantly with SD vulnerability (ΔLASxΔRS: r=-0.64, p<.0001; ΔLASxΔlapse: r=0.43, p=.018; ΔHASxΔRS; r=0.43, p=.019; ΔHASxΔlapse; r=-0.39, p=.033). Finally, Δ%transitions was correlated with ΔRS but not Δlapse. This study adds to the evidence that two specific reproducible DCS are robust markers of arousal and attention, and may be useful indicators of SD vulnerability. This work was supported by the National Medical Research Council, Singapore (STaR/0015/2013), and the National Research Foundation Science of Learning (NRF2016-SOL002-001).
               
Click one of the above tabs to view related content.