LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Manipulations of the olfactory circuit highlight the role of sensory stimulation in regulating sleep amount.

Photo from wikipedia

STUDY OBJECTIVES While wake duration is a major sleep driver, an important question is if wake quality also contributes to controlling sleep. In particular, we sought to determine whether changes… Click to show full abstract

STUDY OBJECTIVES While wake duration is a major sleep driver, an important question is if wake quality also contributes to controlling sleep. In particular, we sought to determine whether changes in sensory stimulation affect sleep in Drosophila. As Drosophila rely heavily on their sense of smell, we focused on manipulating olfactory input and the olfactory sensory pathway. METHODS Sensory deprivation was first performed by removing antennae or applying glue to antennae. We then measured sleep in response to neural activation, via TRPA1, or inhibition, via KIR2.1, of subpopulations of neurons in the olfactory pathway. Genetically restricting manipulations to adult animals prevented developmental effects. RESULTS We find that olfactory deprivation reduces sleep, largely independently of mushroom bodies that integrate olfactory signals for memory consolidation and have previously been implicated in sleep. However, specific neurons in the lateral horn, the other third order target of olfactory input, affect sleep. Also, activation of inhibitory second order projection neurons increases sleep. No single neuronal population in the olfactory processing pathway was found to bidirectionally regulate sleep, and reduced sleep in response to olfactory deprivation may be masked by temperature changes. CONCLUSIONS These findings demonstrate that Drosophila sleep is sensitive to sensory stimulation, and identify novel sleep-regulating neurons in the olfactory circuit. Scaling of signals across the circuit may explain the lack of bidirectional effects when neuronal activity is manipulated. We propose that olfactory inputs act through specific circuit components to modulate sleep in flies.

Keywords: sensory stimulation; circuit; manipulations olfactory; sleep; olfactory circuit

Journal Title: Sleep
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.