Modern lifestyle curtails sleep and increases night-time work and leisure activities. This has a deleterious impact on vigilance and attention, exacerbating chances of committing attentional lapses, with potential dramatic outcomes.… Click to show full abstract
Modern lifestyle curtails sleep and increases night-time work and leisure activities. This has a deleterious impact on vigilance and attention, exacerbating chances of committing attentional lapses, with potential dramatic outcomes. Here, we investigated the brain signature of attentional lapses and assessed whether cortical excitability and brain response propagation were modified during lapses and whether these modifications changed with aging. We compared electroencephalogram (EEG) responses to transcranial magnetic stimulation (TMS) during lapse and no-lapse periods while performing a continuous attentional/vigilance task at night, after usual bedtime. Data were collected in healthy younger (N=12; 18-30 y) and older individuals (N=12; 50-70 y) of both sexes. The amplitude and slope of the first component of the TMS-Evoked Potential (TEP) were larger during lapses. In contrast, TMS response scattering over the cortical surface, as well as EEG response complexity, did not significantly vary between lapse and no-lapse periods. Importantly, despite qualitative differences, age did not significantly affect any of the TMS-EEG measures. These results demonstrate that attentional lapses are associated with a transient increase of cortical excitability. This initial change is not associated with detectable changes in subsequent effective connectivity - as indexed by response propagation - and are not markedly different between younger and older adults. These findings could contribute to develop models aimed to predicting and preventing lapses in real life situations.
               
Click one of the above tabs to view related content.