Acute liver failure (ALF), characterized by the quick occurrence of disorder in liver, is a serious liver injury with extremely high mortality. Therefore, we investigated whether diallyl trisulfide (DATS), a… Click to show full abstract
Acute liver failure (ALF), characterized by the quick occurrence of disorder in liver, is a serious liver injury with extremely high mortality. Therefore, we investigated whether diallyl trisulfide (DATS), a natural product from garlic, protected against ALF in mice and studied underlying mechanisms. In the present study, lipopolysaccharide (LPS) (10 μg·kg-1)/D-galactosamine (D-gal) (500 mg·kg-1) was intraperitoneally injected to ICR mice to induce ALF. The mice were orally administered 20-, 40-, or 80-mg·kg-1 DATS) 1 h before LPS/D-gal exposure. Serum biochemical analyses and pathological study found that DATS pretreatment effectively prevented the ALF in LPS/D-gal-treated mice. Mechanistically, pretreatment of DATS inhibited the increase of the numbers of CD11b+ Kupffer cells and other macrophages in the liver, the release of tumor necrosis factor-α into the blood, and Caspase-1 activation induced by LPS/D-gal treatment in mice. Furthermore, DATS inhibited the activation of Caspase-3, downregulation of Bcl-2/Bax ratio, and increase of TUNEL positive staining. Altogether, our findings suggest that DATS exhibits hepatoprotective effects against ALF elicited by LPS/D-gal challenge, which probably associated with anti-inflammation and anti-apoptosis.
               
Click one of the above tabs to view related content.