LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

RNA in situ hybridization and expression of related genes regulating the accumulation of triterpenoids in Cyclocarya paliurus.

Photo by ospanali from unsplash

Cyclocarya paliurus, a woody medicinal species in the Juglandaceae, grows extensively in subtropical areas of China. Triterpenoids in the leaves have health-promoting effects, including hypoglycemic and hypolipidemic activities. To understand… Click to show full abstract

Cyclocarya paliurus, a woody medicinal species in the Juglandaceae, grows extensively in subtropical areas of China. Triterpenoids in the leaves have health-promoting effects, including hypoglycemic and hypolipidemic activities. To understand triterpenoid biosynthesis, transport, and accumulation in C. paliurus during the growing season, gene cloning, gene expression, and RNA in situ hybridization of related genes were used, and accumulation was examined in various organs. The complete CDSs of three genes, CpHMGR, CpDXR, and CpSQS, were obtained from GenBank and RACE. RNA in situ hybridization signals of the three genes mainly occurred in the epidermis, palisade tissue, phloem, and xylem of leaf, shoot, and root, with the signals generally consistent with the accumulation of metabolites in tissues, except in the xylem. Both gene expression and triterpenoid accumulations showed seasonal variations in all organs. However, total triterpenoid content in the leaves was significantly higher than that in the shoots, with the maximum in shoots in August and in leaves in October. According to Pearson correlation analysis, triterpenoid accumulation in the leaves was significantly positively related with the relative expression of CpSQS. However, the relation between gene expression and accumulation was dependent on the role of the gene in the pathway, as well as on the plant organ. The results suggested that most of the intermediates catalyzed by CpHMGR and CpDXR in young shoots and roots were used in growth and flowering in the spring, whereas subsequent triterpenoid biosynthesis in the downstream catalyzed by CpSQS mainly occurred in the leaves by using transferred and in situ intermediates as substrates. Thus, this study provides a reference to improve triterpenoid accumulation in future C. paliurus plantations.

Keywords: accumulation; expression; paliurus; gene; rna situ; situ hybridization

Journal Title: Tree physiology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.