LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

UV-B and UV-C radiation trigger both common and distinctive signal perceptions and transmissions in Pinus tabuliformis Carr.

Photo by ilja_nedilko from unsplash

In plants, ultraviolet (UV)-light is an important driver for their growth and natural distribution and is also a valuable tool for manipulating their productivity as well as their biotic interactions.… Click to show full abstract

In plants, ultraviolet (UV)-light is an important driver for their growth and natural distribution and is also a valuable tool for manipulating their productivity as well as their biotic interactions. Understanding plant responses to different UV radiation is sparse, especially from a systems biology perspective and particularly for conifers. Here, we evaluated the physiological and transcriptomic responses to the short-term application of high-irradiance UV-B and UV-C waves on Pinus tabuliformis Carr., a major conifer in Northern China. By undertaking time-ordered gene co-expression network analyses and network comparisons incorporating physiological traits and gene expression variation, we uncovered communalities but also differences in P. tabuliformis responses to UV-B and UV-C. Both types of spectral bands caused a significant inhibition of photosynthesis, and conversely, the improvement of antioxidant capacity, flavonoid production and signaling pathways related to stress resistance, indicating a clear switch from predominantly primary metabolism to enhanced defensive metabolism in pine. We isolated distinct subnetworks for photoreceptor-mediated signal transduction, maximum quantum efficiency of photosystem II (Fv/Fm) regulation and flavonoid biosynthesis in response to UV-B and UV-C radiation. From these subnetworks, we further identified phototropins as potentially important elements in both UV-B and UV-C signaling and, for the first time, suggesting peptide hormones to be involved in promoting flavonoid biosynthesis against UV-B, while these hormones seem not to be implicated in the defense against UV-C exposure. The present study employed an effective strategy for disentangling the complex physiological and genetic regulatory mechanisms in a non-model plant species, and thus, provides a suitable reference for future functional evaluations and artificial UV-light mediated growing strategies in plant production.

Keywords: radiation trigger; tabuliformis carr; trigger common; common distinctive; radiation; pinus tabuliformis

Journal Title: Tree physiology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.