Leaf-level anatomical variation is readily apparent within tall tree crowns, yet the relative importance of water and light availability in controlling this variation remains unclear. Sitka spruce (Picea sitchensis, (Bong.)… Click to show full abstract
Leaf-level anatomical variation is readily apparent within tall tree crowns, yet the relative importance of water and light availability in controlling this variation remains unclear. Sitka spruce (Picea sitchensis, (Bong.) Carr.) thrives in temperate rainforests of the Pacific Northwest, where it has historically reached heights >100 m, despite rarely living more than 400 years alongside redwoods that are five times older. We examined leaves of trees up to 97 m tall using a combination of transverse sections, longitudinal sections, epidermal imprints and whole-leaf measurements to explore the combined effects of water stress and light availability on leaf development in P. sitchensis. In contrast to the situation in tall Cupressaceae, light availability-not hydraulic limitation-is the primary ecological driver of leaf-level anatomical variation in P. sitchensis. While height-associated decreases in leaf length and mesoporosity are best explained by hydrostatic constraints on leaf elongation, the majority of anatomical traits we measured reflect acclimation to light availability, including increases in leaf width and vascular tissue areas in the brightest parts of the crown. Along with these changes, the appearance of abaxial stomata in the bright upper crown, and the arrangement of mesophyll in uniseriate, transverse plates-with radially arranged apoplastic pathways leading directly to stomata before bridging them with a V-shaped cell-may enhance gas exchange and hydraulic conductivity. This suite of leaf traits suggests an adaptive strategy that maximizes photosynthesis at the expense of water-stress tolerance. Anatomical investigations spanning the height gradient in tall tree crowns build our understanding of mechanisms underlying among-species variation in growth rates, life spans, and potential responses to climate change.
               
Click one of the above tabs to view related content.