Incomplete descriptions of nominal taxa are one of the most significant obstacles in modern taxonomy, including the taxonomy of Tardigrada. Another major problem in tardigrade systematics is the lack of… Click to show full abstract
Incomplete descriptions of nominal taxa are one of the most significant obstacles in modern taxonomy, including the taxonomy of Tardigrada. Another major problem in tardigrade systematics is the lack of tests for the reliability of genetic markers in species delineation. Here, we employ an integrative taxonomy approach to redescribe the nominal taxon for the P. areolatus complex, Paramacrobiotus areolatus. Moreover, we obtained multilocus DNA sequences for another 16 populations representing 9–12 Paramacrobiotus species collected from Europe, North America, Africa and Australia, enabling us to reconstruct the most extensive phylogeny of the genus to date. The identification of a pair of potentially cryptic dioecious P. areolatus complex species with divergent genetic distances in ITS2 (1.4%) and COI (13.8%) provided an opportunity to test the biological species concept for the first time in the history of tardigrade taxonomy. Intra- and interpopulation crosses did not differ in reproductive success in terms of F1 offspring. However, because of the low F1 family sizes, we were unfortunately unable to test F1 hybrid fertility. Although our results are only partially conclusive, they offer a baseline not only for further taxonomic and phylogenetic research on the areolatus complex, but also for studies on species delineation in tardigrades in general.
               
Click one of the above tabs to view related content.