Duohua huangjing (Polygonatum cyrtonema Hua) seedling basal stem rot caused by Fusarium redolens in China Tao Tang1, Fanfan Wang1, Jie Guo1, Xiaoliang Guo1, Yuanyuan Duan1,Jingmao You1* 1 Institute of Chinese… Click to show full abstract
Duohua huangjing (Polygonatum cyrtonema Hua) seedling basal stem rot caused by Fusarium redolens in China Tao Tang1, Fanfan Wang1, Jie Guo1, Xiaoliang Guo1, Yuanyuan Duan1,Jingmao You1* 1 Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences, Enshi, 445000, China. Duohua huangjing (Polygonatum cyrtonema Hua), a herbal medicine, that is mostly planted in several provinces in China. In April 2020, severe diseases with about 40% seedling losse was found in the Huangjing seedling base in Shiyan city, Hubei province. The symptoms included softening and decay of the roots and stem bases, a progressive yellowing and wilting of leaves, and finally being completely rotted. Small pieces of symptomatic stems (0.5 cm in length) and leaves (0.5 × 0.5 cm in size) were surface sterilized with 75% ethanol for 30 s, followed by 0.1% HgCl2 for 1 min, rinsed three times with sterile water, and then dried with sterilized absorbent paper. The sections were placed on potato dextrose agar (PDA) medium containing 10 µg/ml of ampicillin and incubated at 25°C in the dark. After 3 days incubation, eight isolates with the same colony morphology were sub-cultured and purified by hyphal tip isolation. Macroconidia were sickle-shaped, 15.8 - 32.3 × 3.1 - 5.6 μm (n = 25), and three to five septate. Microconidia were oval or kidney-shaped, 5.2 - 11.4 × 2.0 - 3.2 μm (n = 25), and zero to one septate. To confirm the identity of the pathogen, molecular identification was performed with strain HJCD1. Following DNA extraction, PCR was performed using the TSINGKE 2×T5 Direct PCR Mix kit. Target areas of amplification were the internal transcribed spacer (ITS) and translation elongation factor 1α (TEF-1α) using ITS1/4 (White et al. 1990) , EF1/EF2 (Taylor et al. 2016), respectively. Following BLAST searches and phylogenetic reconstruction, the ITS region (GenBank MW485770.1) showed 99% identity with those of Fusarium redolens in GenBank (KU350713.1) and the TEF-1α (GenBank MW503930.1) showed 100% identity with F. redolens GenBank (MK922537.1). Pathogenicity tests were performed to fulfill Koch's postulates. Huangjing seedlings were rinsed with sterile water, wiped clean with sterile absorbent paper, and transferred to a tray covered with wet filter paper to maintain high humidity. The mycelial piugs of F. redolens HJCD1 were inoculated onto the surface of leaves and basal stems. Controls were inoculated with sterile PDA plugs. The inoculated seedlings were sealed with plastic wrap, and then cultivated in a 25 ℃ growth chamber with 16 h of light per day. The pathogen-inoculated plants exhibited etiolation and typical wilt symptoms after 4 days, whereas no symptoms were observed in the control plants. F. redolens was reisolated from the infected tissues, and colony morphology and ITS sequence of re-isolates were same as that of HJCD1. The pathogen has been reported previously in american ginseng in China (Fan et al. 2021), lentil in Pakistan (Rafique et al. 2020), and wild rocket in United Kingdom (Taylor et al. 2019). However, to the best of our knowledge, this is the first report of F. redolens causing seelding basal rot on Duohua huangjing in China. References: White, T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA. Taylor, A., et al. 2016. Mol. Plant Pathol. 17:1032. https://doi.org/10.1111/mpp.12346 Fan, S. H., et al. 2021. Plant Dis. https://doi.org/10.1094/PDIS-11-19-2519-PDN Rafique, K., et al. 2020. Plant Dis. 9:104. https://doi.org/10.1094/PDIS-11-19-2519-PDN Taylor, A., et al. 2019. Plant Dis.6:103. https://doi.org/10.1094/PDIS-12-18-2143-PDN Funding: Science Funds for Young Scholar of Hubei Academy of Agricultural Science (grant no. 2020NKYJJ20), National Modern Agricultural Industrial Technology System (grant no. CARS-21), Technology R&D Program of Enshi (grant no. D20190015), Science Funds for Young Scholar of Institute of Chinese Herbal Medicines, Hubei Academy of Agricultural Sciences (grant no. 2019ZYCJJ03), Key Laboratory of Integrated Management of Crops of Central China, Ministry of Agriculture, P. R. China / Hubei Key Laboratory of Crop Disease, Insect Pests and Weeds Control (grant no.2020ZTSJJ6).
               
Click one of the above tabs to view related content.