Alnus cremastogyne Burk, a broad-leaved tree endemic to south-western China, has both ecological and economic value. The tree is widely used in furniture, timber, windbreaks and sand fixation, and soil… Click to show full abstract
Alnus cremastogyne Burk, a broad-leaved tree endemic to south-western China, has both ecological and economic value. The tree is widely used in furniture, timber, windbreaks and sand fixation, and soil and water conservation (Tariq et al. 2018). In December 2020, a new leaf spot disease was discovered on A. cremastogyne in two plant nurseries in Bazhong City (31°15' to 32°45N, 106°21' to 107°45'E), with 77.53% disease incidence. Among the infected trees, 69.54% of the leaves were covered with symptoms of the disease. The typical symptoms initially appeared as irregular brown necrotic lesions, while some lesions were surrounded by a light yellow halo. As the disease progressed, the number of necrotic lesions increased, and lesions gradually expanded and coalesced (Fig. 1). Finally, the disease caused the leaves of A. cremastogyne to wither, curl, die, and fall off. Ten symptomatic leaves were collected from 5 different trees in the two plant nurseries. The leaves with symptoms of leaf spot disease were collected and cut from the junction between the diseased and the healthy tissues. The infected tissues from 10 samples were cut into small 2.5 × 2.5 mm pieces. Infected tissues was sterilized in 3% NaClO solution for 60 s followed by 75% ethanol for 90 s, rinsed three times in sterile water, blot-dried with autoclaved paper towels, and then cultured on potato dextrose agar (PDA) at 25℃ for 4 to 8 days in 12 h/12 h light/dark conditions. After 8 days, the colony diameter reached 71.2 to 79.8 mm. The colonies were initially light pink, and then turned white with pale orange beneath. The conidia were single-celled, aseptate, colorless, cylindrical, straight, bluntly rounded at both ends, and measured 11.6 to 15.9 × 4.3 to 6.1 μm (n = 100). These morphological characteristics were consistent with the description of Colletotrichum gloeosporioides (Pan et al. 2021). For molecular identification, the genomic DNA of a representative isolate, QM202012, was extracted using a fungal genomic DNA extraction kit (Solarbio, Beijing). The internal transcribed spacer (ITS), actin (ACT), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were amplified with primers ITS1/ITS4 (White et al. 1990), ACT-512F/ACT-783R (Carbone & Kohn, 1999) and GDF/GDR (Templeton et al. 1992), respectively. Sequences were deposited in GenBank (ITS: OL744612, ACT: OL763390, and GAPDH: OL799166). BLAST results indicated that the ITS, ACT, and GAPDH sequences showed >99% identity with C. gloeosporioides sequences in NCBI (GenBank NR160754, MG561657, and KP145407). Identification was confirmed by Bayesian inference using Mr Bayer (Fig 2) A conidial suspension (1 × 106 conidia/ml) was used to test pathogenicity on the leaves of 4-year-old A. cremastogyne plants (10 plants). Fifteen leaves of each plant (10 pots in total) were inoculated with the spore suspension on the leaves. The same number of control leaves was sprayed with sterilized distilled water as a control. Finally, all potted plants were placed in a greenhouse at 25°C under 16 h/8 h photoperiod and 67 to 78% relative humidity. The symptoms observed on the inoculated plants were similar to those of the original diseased plants, with 100% of the inoculated plants being infested with brown leaf spots, but the controls remained symptom-free. C. gloeosporioides was re-isolated from the infected leaves and identified by both morphological characteristics and DNA sequence analysis. The pathogenicity test was repeated three times, showing similar results each time, confirming Koch's postulates. To our knowledge, this is the first report of leaf spot on A. cremastogyne caused by C. gloeosporioides in China. This finding indicates that C. gloeosporioides may become a serious threat to A. cremastogyne production in Bazhong City and helps to further examine and prevent leaf spot disease in A. cremastogyne growing areas in Bazhong City.
               
Click one of the above tabs to view related content.