LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Brief Evaluation of Copper Resistance Mobile Genetic Island in the Bacterial Leaf Spot Pathogen, Xanthomonas euvesicatoria pv. perforans.

Photo from wikipedia

Due to the continuous use of copper containing bactericides without effective alternative bactericides, copper resistance has become more prevalent in plant pathogens, including Xanthomonas euvesicatoria pv. perforans (formerly Xanthomonas perforans),… Click to show full abstract

Due to the continuous use of copper containing bactericides without effective alternative bactericides, copper resistance has become more prevalent in plant pathogens, including Xanthomonas euvesicatoria pv. perforans (formerly Xanthomonas perforans), a predominant cause of bacterial leaf spot disease of tomato and pepper in the Southeastern United States Previously, reports of copper resistance have been associated with a large conjugative plasmid. However, we have characterized a copper resistance genomic island located within the chromosome of multiple Xanthomonas euvesicatoria pv. perforans strains. The island is distinct from a previously described chromosomally encoded copper resistance island in X. vesicatoria strain XVP26. Computational analysis revealed the genomic island to contain multiple genes associated with genetic mobility including both phage related genes and transposase. Among copper tolerant strains of Xanthomonas euvesicatoria pv. perforans isolated from Florida, the majority of strains were found to have the copper resistance chromosomally encoded rather than plasmid borne. Our results suggest that this copper resistance island may have two modes of horizontal gene transfer and that chromosomally encoded copper resistance genes may provide a fitness advantage over plasmid borne resistance.

Keywords: copper; copper resistance; euvesicatoria perforans; resistance; island; xanthomonas euvesicatoria

Journal Title: Phytopathology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.