The phytopathogenic bacterium Xanthomonas euvesicatoria causes bacterial leaf spot (BLS) of pepper and has a worldwide distribution. BLS is difficult to control and an integrated management strategy that incorporates crop… Click to show full abstract
The phytopathogenic bacterium Xanthomonas euvesicatoria causes bacterial leaf spot (BLS) of pepper and has a worldwide distribution. BLS is difficult to control and an integrated management strategy that incorporates crop rotation, use of clean seed and clean plants, weed control, resistant varieties, applications of bactericides, biocontrol agents, and systemic acquired resistance (SAR) inducers is generally recommended. However, even with that arsenal of weapons, BLS can still be responsible for severe losses under favorable environmental conditions. Thus, additional tools need to be added to an overall integrated management strategy to combat BLS. In this article, we developed several models from 2012 to 2014 that were based on how macronutrients, micronutrients, and micronutrient ratios affect BLS severity. Factors used to select a model for validation included highly significant P values, high adjusted R2 values, low variance inflation factor values (<5), root mean square error, Mallow's Cp, and high Akaike's information criterion correction values. In addition, salicylic acid (SA) concentrations and relative expression of nonexpresser pathogenesis-related gene1 (NPR1) and pathogenesis-related protein 1 (PR1) in pepper tissues were also considered in model selection. A model (ECGA1) consisting of concentrations of copper, manganese, potassium, and the iron/zinc ratio as independent variables was used for validation in three different commercial pepper fields in Georgia: Colquitt County and Worth County in 2015 and Tift County in 2016. When area under the disease progress curve (AUDPC) values for two field sites (Colquitt and Worth Counties) in 2015 were pulled together and plotted against ECGA1-predicted values for both sites, the resulting relationship was highly significant (P = 0.0001) with an R2 value of 0.92. A significant relationship between observed AUDPC versus predicted values was also observed in Tift County in 2016 (P < 0.001; adjusted R2 = 0.98). Relative gene expression of both NPR1 and PR1 genes was significantly (P < 0.01) higher in pepper grown in predicted low-risk sites compared with pepper from high-risk sites in Colquitt, Worth, and Tift Counties. Although BLS severity will fluctuate depending on environmental conditions, the data indicate that the level of risk at a particular location may be influenced by how macronutrient and micronutrient concentrations affect plant disease resistance genes in the SAR pathway.
               
Click one of the above tabs to view related content.