LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fast-spiking Interneurons Contribute to Propofol-induced Facilitation of Firing Synchrony in Pyramidal Neurons of the Rat Insular Cortex.

Photo from wikipedia

BACKGROUND The general anesthetic propofol induces frontal alpha rhythm in the cerebral cortex at a dose sufficient to induce loss of consciousness. The authors hypothesized that propofol-induced facilitation of unitary… Click to show full abstract

BACKGROUND The general anesthetic propofol induces frontal alpha rhythm in the cerebral cortex at a dose sufficient to induce loss of consciousness. The authors hypothesized that propofol-induced facilitation of unitary inhibitory postsynaptic currents would result in firing synchrony among postsynaptic pyramidal neurons that receive inhibition from the same presynaptic inhibitory fast-spiking neurons. METHODS Multiple whole cell patch clamp recordings were performed from one fast-spiking neuron and two or three pyramidal neurons with at least two inhibitory connections in rat insular cortical slices. The authors examined how inhibitory inputs from a presynaptic fast-spiking neuron modulate the timing of spontaneous repetitive spike firing among pyramidal neurons before and during 10 μM propofol application. RESULTS Responding to activation of a fast-spiking neuron with 150-ms intervals, pyramidal cell pairs that received common inhibitory inputs from the presynaptic fast-spiking neuron showed propofol-dependent decreases in average distance from the line of identity, which evaluates the coefficient of variation in spike timing among pyramidal neurons: average distance from the line of identity just after the first activation of fast-spiking neuron was 29.2 ± 24.1 (mean ± SD, absolute value) in control and 19.7 ± 19.2 during propofol application (P < 0.001). Propofol did not change average distance from the line of identity without activating fast-spiking neurons and in pyramidal neuron pairs without common inhibitory inputs from presynaptic fast-spiking neurons. The synchronization index, which reflects the degree of spike synchronization among pyramidal neurons, was increased by propofol from 1.4 ± 0.5 to 2.3 ± 1.5 (absolute value, P = 0.004) and from 1.5 ± 0.5 to 2.2 ± 1.0 (P = 0.030) when a presynaptic fast-spiking neuron was activated at 6.7 and 10 Hz, respectively, but not at 1, 4, and 13.3 Hz. CONCLUSIONS These results suggest that propofol facilitates pyramidal neuron firing synchrony by enhancing inhibitory inputs from fast-spiking neurons. This synchrony of pyramidal neurons may contribute to the alpha rhythm associated with propofol-induced loss of consciousness. EDITOR’S PERSPECTIVE

Keywords: spiking neuron; firing synchrony; propofol induced; pyramidal neurons; fast spiking

Journal Title: Anesthesiology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.