PURPOSE OF REVIEW To review recent studies using 'Omics' approaches (genomics, proteomics, metabolomics, single cell analyses) in patient populations and animal models of osteoarthritis (OA), with the goal of identifying… Click to show full abstract
PURPOSE OF REVIEW To review recent studies using 'Omics' approaches (genomics, proteomics, metabolomics, single cell analyses) in patient populations and animal models of osteoarthritis (OA), with the goal of identifying disease-modifying mechanisms that could serve as therapeutic and diagnostic targets. RECENT FINDINGS The number of genes, pathways and molecules with potential roles in OA pathogenesis has grown substantially over the last 18 months. Studies have expanded from their traditional focus on cartilage and gene expression to other joint tissues, proteins and metabolites. Single cell approaches provide unprecedented resolution and exciting insights into the heterogeneity of cellular activities in OA. Functional validation and investigation of underlying mechanisms in animal models of OA, in particular genetically engineered mice, link Omics findings to pathophysiology and potential therapeutic applications. SUMMARY Although great progress has been made in the use of Omics approaches to OA, in both animal models and patient samples, much work remains to be done. In addition to filling gaps in data sets not yet existing, integration of data from the various approaches, mechanistic investigations, and linkage of Omics data to patient stratification remain significant challenges.
               
Click one of the above tabs to view related content.