LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Circular RNA sterile alpha motif domain containing 4A contributes to cell 5-fluorouracil resistance in colorectal cancer by regulating the miR-545-3p/6-phosphofructo-2-kinase/fructose-2,6-bisphosphataseisotype 3 axis

Photo by art_almighty from unsplash

Colorectal cancer (CRC) is one of the most fatal cancers in the world. Circular RNA sterile alpha motif domain containing 4A (circSAMD4A) was found to be highly expressed in CRC… Click to show full abstract

Colorectal cancer (CRC) is one of the most fatal cancers in the world. Circular RNA sterile alpha motif domain containing 4A (circSAMD4A) was found to be highly expressed in CRC and promoted the tumorigenesis of CRC. However, the role of circSAMD4A in 5-fluorouracil (5-Fu) resistance of CRC is yet to be clarified. This study is designed to investigate the function of circSAMD4A in 5-Fu resistance of CRC and its potential molecular mechanism. Quantitative real-time PCR was used to detect the expression levels of circSAMD4A, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase isotype 3 (PFKFB3) mRNA, and miR-545-3p, and western blot was used to detect the protein expression. For functional analysis, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, colony formation/5-ethynyl-2′-deoxyuridine assay, flow cytometry analysis, and glycolysis metabolism analysis were used to assess the capacities of cell viability, proliferation, apoptosis, and glycolysis in 5-Fu–resistant cells of CRC. The dual-luciferase reporter assay was used to verify the interaction between miR-545-3p and circSAMD4A or PFKFB3. Xenograft tumor model was established to confirm the biological role of circSAMD4A in 5-Fu resistance of CRC in vivo. CircSAMD4A was upregulated in 5-Fu–resistant CRC tissues and cells. Functionally, circSAMD4A knockdown inhibited the proliferation and glycolysis mechanism but promoted apoptosis in 5-Fu–resistant cells of CRC. CircSAMD4A was identified as a molecular sponge of miR-545-3p to upregulate PFKFB3 expression. Mechanistically, circSAMD4A knockdown-induced 5-Fu sensitivity was mediated by miR-545-3p/PFKFB3 axis. Moreover, circSAMD4A knockdown improved 5-Fu sensitivity of CRC in vivo. CircSAMD4A contributed to 5-Fu resistance of CRC cells partly through upregulating PFKFB3 expression by sponging miR-545-3p, providing a possible circRNA-targeted therapy for CRC.

Keywords: circsamd4a; mir 545; crc; colorectal cancer; resistance

Journal Title: Anti-Cancer Drugs
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.