Background Dysregulation of cancer-associated fibroblasts (CAFs) still greatly challenges the treatments for bladder cancer (BC), where exosomal miRNAs derived from CAFs are one of the essential effectors for tumor progression.… Click to show full abstract
Background Dysregulation of cancer-associated fibroblasts (CAFs) still greatly challenges the treatments for bladder cancer (BC), where exosomal miRNAs derived from CAFs are one of the essential effectors for tumor progression. miR-93-5p is reported to be upregulated in BC, however, it is barely investigated in BC-derived CAFs. Method The CAF markers were immunofluorescent-labeled and examined by western blotting assay in CAFs and normal fibroblasts (NFs). CAFs- and NFs-derived exosomes (CAFs-exo/NFs-exo) were authenticated by transmission electron microscope and nanoparticle tracking analysis. Cell viability was determined by cell counting kit-8 assay, and cell mobility was evaluated by wound healing and transwell assays. Real-time quantitative PCR was used to quantify the RNA expressions, and a western blotting assay was used for protein expression. Interaction between miR-93-5p and Platelet-Activating Factor Acetylhydrolase IB Subunit Beta (PAFAH1B1) was verified by luciferase reporter assay. HE staining assay was applied to assess the histological changes of xenografts. Results CAFs-exo notably enhanced cell mobility and the expression levels of miR-93-5p of BC cells compared to NFs-exo. However, inhibition of miR-93-5p in CAFs-exo exhibited attenuated pro-metastatic ability on BC cells. PAFAH1B1 was one of the predicted targets of miR-93-5p, whose mRNA level was most significantly downregulated after miR-93-5p transfection. The interaction between PAFAH1B1 and miR-93-5p was verified, and miR-93-5p negatively regulated the protein level of PAFAH1B1. Overexpression of PAFAH1B1 could efficiently reverse the effects of miR-93-5p mimic on BC cell mobility. Finally, inhibition of miR-93-5p was proved to impair the carcinogenic function of CAFs-exo in vivo. Conclusion Exosomal miR-93-5p derived from CAFs confers oncogenicity on BC cells via sponging PAFAH1B1, suggesting a novel therapeutic strategy for BC.
               
Click one of the above tabs to view related content.