PURPOSE OF REVIEW Hyperlipidemia, hypertension, diabetes and related metabolic disorders increase the risk for cardiovascular disease (CVD). Despite significant progress in the identification of key mechanisms and genetic polymorphisms linked… Click to show full abstract
PURPOSE OF REVIEW Hyperlipidemia, hypertension, diabetes and related metabolic disorders increase the risk for cardiovascular disease (CVD). Despite significant progress in the identification of key mechanisms and genetic polymorphisms linked to various CVDs, the rates of CVDs continue to escalate, underscoring the need to evaluate additional mechanisms for more effective therapies. Environment and lifestyle changes can alter epigenetic mechanisms mediated by histone modifications and long noncoding RNAs (lncRNAs) which play important roles in gene regulation. The review summarizes recent findings on the role of epigenetic mechanisms in CVD. RECENT FINDINGS Recent studies identified dysregulated histone modifications and chromatin modifying proteins at cis-regulatory elements, including enhancers/super-enhancers, mediating the expression of genes associated with CVD in vascular and immune cells in response to growth factors and inflammatory mediators. Several lncRNAs have also been reported to contribute to pathological gene expression via cis and trans mechanisms involving interactions with nuclear proteins, co-operation with enhancers/super enhancers and acting as microRNA sponges. SUMMARY Epigenomic approaches in cells affected in CVDs can be exploited to understand the function of genetic polymorphisms at cis-regulatory elements and crosstalk between enhancers and lncRNAs associated with disease susceptibility and progression. The reversible nature of epigenetics provides opportunities for the development of novel therapeutic strategies for CVD.
               
Click one of the above tabs to view related content.