LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

p16 INK4A drives non-alcoholic fatty liver disease phenotypes in high fat diet fed mice via biliary e2f1/foxo1/igf-1 signaling.

Photo by bullterriere from unsplash

BACKGROUNDAND AIM Non-alcoholic fatty liver disease (NAFLD) is characterized by steatosis, hepatic inflammation, and fibrosis which can develop into non-alcoholic steatohepatitis (NASH). NAFLD/NASH patients have increased ductular reaction (DR) and… Click to show full abstract

BACKGROUNDAND AIM Non-alcoholic fatty liver disease (NAFLD) is characterized by steatosis, hepatic inflammation, and fibrosis which can develop into non-alcoholic steatohepatitis (NASH). NAFLD/NASH patients have increased ductular reaction (DR) and biliary senescence. High fat/high cholesterol diet (HFD) feeding increases biliary senescence, DR, and biliary insulin-like growth factor-1 (IGF-1) expression in mice. p16/IGF-1 converges with fork-head box transcription factor O1 (FOXO1) via E2F1. We evaluated p16 inhibition on NAFLD phenotypes and biliary E2F1/FOXO1/IGF-1 signaling. Approach: 4 wk wild-type (WT, C57BL/6J) male mice were fed control diet (CD) or HFD and received either p16 or control Vivo Morpholino (VM) by tail vein injection 2x during the 16th wk of feeding. We confirmed p16 knockdown and examined (i) NAFLD phenotypes; (ii) DR and biliary senescence; (iii) serum metabolites; and (iv) biliary E2F1/FOXO1/IGF-1 signaling. Human normal, NAFLD, and NASH liver samples and isolated cholangiocytes treated with control or p16 VM, were evaluated for p16/E2F1/FOXO1/IGF-1 signaling. RESULTS p16 VM treatment reduced cholangiocyte and hepatocyte p16. In WT HFD mice with control VM, there was increased (i) NAFLD phenotypes, (ii) DR and biliary senescence, (iii) serum metabolites, and (iv) biliary E2F1/FOXO1/IGF-1 signaling; however, p16 VM treatment reduced these parameters. Biliary E2F1/FOX-O1/IGF-1 signaling increased in human NAFLD/NASH but was blocked by p16 VM. In vitro, p16 VM reduced biliary E2f1 and Foxo1 transcription by inhibiting RNA pol II binding and E2F1 binding at the Foxo1 locus, respectively. Inhibition of E2F1 reduced biliary FOXO1, in vitro. CONCLUSION Attenuating hepatic p16 expression may be a therapeutic approach for improving NAFLD/NASH phenotypes.

Keywords: igf signaling; biliary e2f1; e2f1 foxo1; e2f1; foxo1

Journal Title: Hepatology
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.