For a precise simulation of electromagnetic radiation effects, voxel phantoms require detailed structures to approximate humans. The phantoms currently used still do not have sophisticated structures. This paper presents voxel… Click to show full abstract
For a precise simulation of electromagnetic radiation effects, voxel phantoms require detailed structures to approximate humans. The phantoms currently used still do not have sophisticated structures. This paper presents voxel and surface models of 300 head structures with cranial nerves and reports on a technique for voxel reconstruction of the cranial nerves having very thin and small structures. In real-color sectioned images of the head (voxel size: 0.1 mm), 300 structures were segmented using Photoshop. A surface reconstruction was performed automatically on Mimics. Voxel conversion was run on Voxel Studio. The abnormal shapes of the voxel models were found and classified into three types: thin cord, thin layers, and thin parts in the structures. The abnormal voxel models were amended using extended, filled, and manual voxelization methods devised for this study. Surface models in STL format and as PDF files of the 300 head structures were produced. The STL format has good scalability, so it can be used in most three-dimensional surface model software. The PDF file is very user friendly for students and researchers who want to learn the head anatomy. Voxel models of 300 head structures were produced (TXT format), and their voxel quantity and weight were measured. A voxel model is difficult to handle, and the surface model cannot use the radiation simulation. Consequently, the best method for making precise phantoms is one in which the flaws of the voxel and surface models complement each other, as in the present study.
               
Click one of the above tabs to view related content.