LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Adsorption and Clearance of the Novel Fluorescent Tracer Agent MB-102 During Continuous Renal Replacement Therapy: In Vitro Results.

Photo from wikipedia

MB-102 is a novel fluorescent tracer agent that is exclusively removed from the body by glomerular filtration. This agent can be detected transdermally to provide a real-time measurement of glomerular… Click to show full abstract

MB-102 is a novel fluorescent tracer agent that is exclusively removed from the body by glomerular filtration. This agent can be detected transdermally to provide a real-time measurement of glomerular filtration rate at the point-of-care and is currently in clinical studies for such. MB-102 clearance during continuous renal replacement therapy (CRRT) is unknown. Its plasma protein binding (~0%), molecular weight (~372 Da) and volume of distribution (15-20 L) suggest that it may be removed by renal replacement therapies. To determine the disposition of MB-102 during CRRT, an in vitro study assessing the transmembrane clearance (CLTM) and adsorptive clearance of MB-102 was conducted. A validated in vitro bovine blood continuous hemofiltration (HF) and continuous hemodialysis (HD) models were performed using two types of hemodiafilters to evaluate CLTM of MB-102. For HF, three different ultrafiltration rates were evaluated. For HD, four different dialysate flow rates were evaluated. Urea was used as a control. No MB-102 adsorption to the CRRT apparatus or either of hemodiafilters was observed. MB-102 is readily removed by HF and HD. Dialysate and ultrafiltrate flow rates directly influence MB-102 CLTM. Hence MB-102 CLTM should be measurable for critically ill patients receiving CRRT.

Keywords: clearance; fluorescent tracer; agent; renal replacement; novel fluorescent

Journal Title: ASAIO journal
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.