LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of the anatomic and hemodynamic abnormalities in tricuspid atresia before and after surgery using computational fluid dynamics

Photo from wikipedia

Abstract Analysis of hemodynamics inside tricuspid atresia (TA) chamber is essential to the understanding of TA for optimal treatment. In this study, we introduced a combined computational fluid dynamics (CFD)… Click to show full abstract

Abstract Analysis of hemodynamics inside tricuspid atresia (TA) chamber is essential to the understanding of TA for optimal treatment. In this study, we introduced a combined computational fluid dynamics (CFD) to simulate blood flow in the left ventricle (LV) to study the diastolic flow changes in TA. Real-time 3-dimentional echocardiography loops (ECHO) were acquired in normal control group, in TA patients before surgery (pre-op group) and after surgery (post-op group). ECHO loops were reconstructed and simulated by CFD, the geometric, volumetric changes, and vortices in the LV were studies and compare among 3 groups. Compared with the control group, pre-op TA patients demonstrated significant LV remodeling, manifesting with smaller LV length, larger diameter, width and spherical index, as well as lager volumes; post-op TA group showed revisions in values of both geometric and volumetric measurements. CDF also demonstrated the abnormality of vortices in the pre-op TA patients and the alteration of existence and measurements of vortex in postoperation group. Echo-based CFD modeling can show the abnormality of TA in both LV geometric, volumetric measurements and intracardiac vortices; and CFD is capable to demonstrate the alterations of LV after Fontan and Glenn surgical procedure.

Keywords: surgery; fluid dynamics; group; tricuspid atresia; computational fluid

Journal Title: Medicine
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.