Purpose of review The greatest challenge facing end-stage kidney disease (ESKD) patients is the scarcity of transplantable organs. Advances in genetic engineering that mitigate xenogeneic immune responses have made transplantation… Click to show full abstract
Purpose of review The greatest challenge facing end-stage kidney disease (ESKD) patients is the scarcity of transplantable organs. Advances in genetic engineering that mitigate xenogeneic immune responses have made transplantation across species a potentially viable solution to this unmet need. Preclinical studies and recent reports of pig-to-human decedent renal xenotransplantation signify that clinical trials are on the horizon. Here, we review the physiologic differences between porcine and human kidneys that could impede xenograft survival. Topics addressed include porcine renin and sodium handling, xenograft water handling, calcium, phosphate and acid-base balance, responses to porcine erythropoietin and xenograft growth. Recent findings Studies in nonhuman primates (NHPs) have demonstrated that genetically modified pig kidneys can survive for an extended period when transplanted into baboons. In recent studies conducted by our group and others, hyperacute rejection did not occur in pig kidneys lacking the α1,3Gal epitope transplanted into brain-dead human recipients. These experimental trials did not study potential clinical abnormalities arising from idiosyncratic xenograft responses to human physiologic stimuli due to the brief duration of observation this model entails. Summary Progress in biotechnology is heralding an era of xenotransplantation. We highlight the physiologic considerations for xenogeneic grafts to succeed.
               
Click one of the above tabs to view related content.