LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Integration of Single-Center Data-Driven Vital Sign Parameters into a Modified Pediatric Early Warning System

Photo by museumsvictoria from unsplash

Objectives: Pediatric early warning systems using expert-derived vital sign parameters demonstrate limited sensitivity and specificity in identifying deterioration. We hypothesized that modified tools using data-driven vital sign parameters would improve… Click to show full abstract

Objectives: Pediatric early warning systems using expert-derived vital sign parameters demonstrate limited sensitivity and specificity in identifying deterioration. We hypothesized that modified tools using data-driven vital sign parameters would improve the performance of a validated tool. Design: Retrospective case control. Setting: Quaternary-care children’s hospital. Patients: Hospitalized, noncritically ill patients less than 18 years old. Cases were defined as patients who experienced an emergent transfer to an ICU or out-of-ICU cardiac arrest. Controls were patients who never required intensive care. Cases and controls were split into training and testing groups. Interventions: The Bedside Pediatric Early Warning System was modified by integrating data-driven heart rate and respiratory rate parameters (modified Bedside Pediatric Early Warning System 1 and 2). Modified Bedside Pediatric Early Warning System 1 used the 10th and 90th percentiles as normal parameters, whereas modified Bedside Pediatric Early Warning System 2 used fifth and 95th percentiles. Measurements and Main Results: The training set consisted of 358 case events and 1,830 controls; the testing set had 331 case events and 1,215 controls. In the sensitivity analysis, 207 of the 331 testing set cases (62.5%) were predicted by the original tool versus 206 (62.2%; p = 0.54) with modified Bedside Pediatric Early Warning System 1 and 191 (57.7%; p < 0.001) with modified Bedside Pediatric Early Warning System 2. For specificity, 1,005 of the 1,215 testing set control patients (82.7%) were identified by original Bedside Pediatric Early Warning System versus 1,013 (83.1%; p = 0.54) with modified Bedside Pediatric Early Warning System 1 and 1,055 (86.8%; p < 0.001) with modified Bedside Pediatric Early Warning System 2. There was no net gain in sensitivity and specificity using either of the modified Bedside Pediatric Early Warning System tools. Conclusions: Integration of data-driven vital sign parameters into a validated pediatric early warning system did not significantly impact sensitivity or specificity, and all the tools showed lower than desired sensitivity and specificity at a single cutoff point. Future work is needed to develop an objective tool that can more accurately predict pediatric decompensation.

Keywords: bedside pediatric; early warning; pediatric early; warning system

Journal Title: Pediatric Critical Care Medicine
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.