LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Preliminary study: quantification of chronic pain from physiological data

Photo from wikipedia

Supplemental Digital Content is Available in the Text. Preliminary evidence suggests that physiological variables collected with our low-cost pain meter are correlated with chronic pain, both for individuals and populations.… Click to show full abstract

Supplemental Digital Content is Available in the Text. Preliminary evidence suggests that physiological variables collected with our low-cost pain meter are correlated with chronic pain, both for individuals and populations. Abstract Introduction: It is unknown if physiological changes associated with chronic pain could be measured with inexpensive physiological sensors. Recently, acute pain and laboratory-induced pain have been quantified with physiological sensors. Objectives: To investigate the extent to which chronic pain can be quantified with physiological sensors. Methods: Data were collected from chronic pain sufferers who subjectively rated their pain on a 0 to 10 visual analogue scale, using our recently developed pain meter. Physiological variables, including pulse, temperature, and motion signals, were measured at head, neck, wrist, and finger with multiple sensors. To quantify pain, features were first extracted from 10-second windows. Linear models with recursive feature elimination were fit for each subject. A random forest regression model was used for pain score prediction for the population-level model. Results: Predictive performance was assessed using leave-one-recording-out cross-validation and nonparametric permutation testing. For individual-level models, 5 of 12 subjects yielded intraclass correlation coefficients between actual and predicted pain scores of 0.46 to 0.75. For the population-level model, the random forest method yielded an intraclass correlation coefficient of 0.58. Bland–Altman analysis shows that our model tends to overestimate the lower end of the pain scores and underestimate the higher end. Conclusion: This is the first demonstration that physiological data can be correlated with chronic pain, both for individuals and populations. Further research and more extensive data will be required to assess whether this approach could be used as a “chronic pain meter” to assess the level of chronic pain in patients.

Keywords: physiological data; level; chronic pain; pain; model

Journal Title: Pain Reports
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.