Background: An ankle-foot orthosis (AFO) is used to assist gait of people with chronic stroke. It is widely accepted that AFO’s plantarflexion resistance affects sagittal knee moments during their gait.… Click to show full abstract
Background: An ankle-foot orthosis (AFO) is used to assist gait of people with chronic stroke. It is widely accepted that AFO’s plantarflexion resistance affects sagittal knee moments during their gait. However, its effect on the coronal knee moment remains unclear. This study aimed to examine the effects of varying articulated AFO’s plantarflexion resistance on knee adduction moment in people with chronic stroke. Methods: Ten people with chronic stroke participated in this study. Gait performance was measured using a Vicon 3-dimensional motion capture system and a Bertec split-belt instrumented treadmill. The participants walked on the treadmill wearing an articulated AFO whose plantarflexion resistance could be systematically adjusted. The ankle joints were set to four distinct levels of plantarflexion resistance (S1 < S2 < S3 < S4). The coronal ankle and knee joint moment, center of pressure, and ground reaction force were analyzed using Visual3D. Results: The external knee adduction moment increased significantly (P < .001) and the position of the center of pressure trajectory shifted significantly (P = .003) in the medial direction as the plantarflexion resistance of the AFO was increased from the least resistive condition (S1) to the most resistive condition (S4). The maximum knee adduction moment (median [interquartile range]) was S1: 0.097 (−0.012 to 0.265) Nm/kg; S2: 0.136 (0.040 to 0.287) Nm/kg; S3: 0.160 (0.465 to 0.289) Nm/kg; and S4: 0.192 (0.080 to 0.288) Nm/kg. Conclusions: This study demonstrated that varying AFO’s plantarflexion resistance altered the knee adduction moment, likely by altering the center of pressure trajectory while walking, in people with chronic stroke.
               
Click one of the above tabs to view related content.