ABSTRACT The role of interleukin-6 (IL-6) in physiological processes and disease is poorly understood. The hypothesis tested in this study was that selective alpha7 acetylcholine receptor (&agr;7AChR) agonist, GTS-21, releases… Click to show full abstract
ABSTRACT The role of interleukin-6 (IL-6) in physiological processes and disease is poorly understood. The hypothesis tested in this study was that selective alpha7 acetylcholine receptor (&agr;7AChR) agonist, GTS-21, releases IL-6 in association with myonuclear accretion and enhances insulin signaling in muscle cells, and improves survival of burn injured (BI) mice. The in vitro effects of GTS-21 were determined in C2C12 myoblasts and 7-day differentiated myotubes (myotubes). The in vivo effects of GTS-21 were tested in BI wild-type (WT) and IL-6 knockout (IL6KO) mice. GTS-21 dose-dependently (0 &mgr;M, 100 &mgr;M, and 200 &mgr;M) significantly increased IL-6 levels in myoblasts and myotubes at 6 and 9 h. GTS-21-induced IL-6 release in myotubes was attenuated by methyllycaconitine (&agr;7AChR antagonist), and by Stat-3 or Stat-5 inhibitors. GTS-21 increased MyoD and Pax7 protein expression, myonuclear accretion, and insulin-induced phosphorylation of Akt, GSK-3&bgr;, and Glut4 in myotubes. The glucose levels of burned IL6KO mice receiving GTS-21 decreased significantly compared with sham-burn IL6KO mice. Superimposition of BI on IL6KO mice caused 100% mortality; GTS-21 reduced mortality to 75% in the IL6KO mice. The 75% mortality in burned WT mice was reduced to 0% with GTS-21. The in vitro findings suggest that GTS-21-induced IL-6 release from muscle is mediated via &agr;7AChRs upstream of Stat-3 and -5 pathways and is associated with myonuclear accretion, possibly via MyoD and Pax7 expression. GTS-21 in vivo improves survival in burned WT mice and IL6KO mice, suggesting a potential therapeutic application of &agr;7AChR agonists in the treatment of BI.
               
Click one of the above tabs to view related content.