ABSTRACT Hypoxia/reoxygenation (H/R) induces pyroptosis in the setting of acute myocardial infarction (AMI). Previous studies have shown that the expression of the miR-15 family is stimulated in myocardial ischemia–reperfusion injury… Click to show full abstract
ABSTRACT Hypoxia/reoxygenation (H/R) induces pyroptosis in the setting of acute myocardial infarction (AMI). Previous studies have shown that the expression of the miR-15 family is stimulated in myocardial ischemia–reperfusion injury or H/R-induced cardiomyocyte injury, and miR-15 is a promoter of cardiac ischemia–reperfusion or H/R injury. However, whether miR-15b-5p regulates H/R injury and cardiomyocyte pyroptosis and its mechanism still need to be further clarified. Bioinformatics analysis elicited that SIRT3 was the downstream regulatory target gene of miR-15b-5p. SIRT3 has been shown to participate in the regulation of pyroptosis by negatively regulating the NLRP3 inflammasome pathway. Therefore, we hypothesized that miR-15b-5p targets SIRT3 and activated the NLRP3 inflammasome pathway to promote H/R-induced cardiomyocyte pyroptosis. We first show that H/R increases miR-15b-5p in rat cardiomyocytes H9C2. Next, we tested the effects of inhibition of miR-15b-5p or overexpression of SIRT3. We found that miR-15b-5p downregulation or SIRT3 overexpression could reverse the H/R-induced pyroptosis. Furthermore, silencing SIRT3 antagonized the protective effect of miR-15b-5p downregulation on H9C2 cells. NLRP3 inhibitor MCC950 annulled the previously mentioned antagonistic effect of silencing SIRT3 on the protection of miR-15b-5p downregulation against pyroptosis. We then used a rat AMI model to analyze myocardial infarction area by triphenyl tetrazolium chloride staining and assess serum cardiac troponin T level by ELISA and found that miR-15b-5p silencing reduced AMI injury in rats. Collectively, these results suggest that miR-15b-5p increase H/R-induced pyroptosis in cardiomyocytes by targeting SIRT3 and activating the NLRP3 inflammasome.
               
Click one of the above tabs to view related content.