LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

ADENOSINE MONOPHOSPHATE–ACTIVATED PROTEIN KINASE PHOSPHORYLATION MEDIATED BY SIRTUIN 5 ALLEVIATES SEPTIC ACUTE KIDNEY INJURY

Photo from wikipedia

ABSTRACT Background: Our previous studies have shown that ameliorating mitochondrial damage in renal tubular epithelial cells (RTECs) can alleviate septic acute kidney injury (SAKI). It is reported that AMPK phosphorylation… Click to show full abstract

ABSTRACT Background: Our previous studies have shown that ameliorating mitochondrial damage in renal tubular epithelial cells (RTECs) can alleviate septic acute kidney injury (SAKI). It is reported that AMPK phosphorylation (p-AMPK) could ameliorate mitochondrial damage in renal tissue and Sirtuin 5 (SIRT5) overexpression significantly enhanced the level of p-AMPK in bovine preadipocytes. However, the role of SIRT5-mediated phosphorylation of AMPK in SAKI needs to be clarified. Methods: WT/SIRT5 gene knockout mouse model of cecal ligation and puncture–induced SAKI and a human kidney 2 cell model of LPS-induced SAKI were constructed. An AMPK chemical activator and SIRT5 overexpression plasmid were used. Indexes of mitochondrial structure and function, level of p-AMPK, and expression of SIRT5 protein in renal tissue and RTECs were measured. Results: After sepsis stimulation, the p-AMPK level was decreased, mitochondrial structure was disrupted, and ATP content was decreased. Notably, an AMPK activator alleviated SAKI. Sirtuin 5 gene knockout significantly aggravated SAKI, while SIRT5 overexpression alleviated mitochondrial dysfunction after LPS stimulation, as manifested by the increase of p-AMPK level, the alleviation of mitochondrial structure damage, the restoration of ATP content, the decrease of proapoptotic protein expression, as well as the reduction of reactive oxygen species generation. Conclusions: Upregulation of SIRT5 expression can attenuate mitochondrial dysfunction in RTECs and alleviate SAKI by enhancing the phosphorylation of AMPK.

Keywords: acute kidney; kidney; kidney injury; septic acute; phosphorylation

Journal Title: Shock
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.