LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Organ-specific changes in vascular reactivity and roles of inducible nitric oxide synthase and endothelin-1 in a rabbit endotoxic shock model

Photo from wikipedia

BACKGROUND Hemorrhagic shock-induced changes in vascular reactivity appear organ-specific. In the present study, we examined the hypothesis that vascular reactivity induced by septic shock similarly displays organ-specific differences and is… Click to show full abstract

BACKGROUND Hemorrhagic shock-induced changes in vascular reactivity appear organ-specific. In the present study, we examined the hypothesis that vascular reactivity induced by septic shock similarly displays organ-specific differences and is regulated by inducible nitric oxide synthase (iNOS) and endothelin-1 (ET-1). METHODS Endotoxic shock was induced in rabbits by administration of lipopolysaccharide (LPS) (1 mg/kg), and organ specificity of vascular reactivity of superior mesenteric artery (SMA), celiac artery (CA), and left renal artery (LRA) as well as the potential involvement of iNOS and ET-1 examined. RESULTS Vascular reactivity of SMA, CA, and LRA was increased at the early stages and decreased at the late stages after LPS administration. Superior mesenteric artery showed the greatest decrease in vascular reactivity in response to norepinephrine (NE) (34.9%) and acetylcholine (Ach; 32.3%), followed by LRA (NE, 33.7%; Ach, 30.5%) and CA (NE, 16.2%), whereas the relaxation reactivity of CA in response to Ach was increased to 159%. The mRNA and protein levels of iNOS and ET-1 in SMA, CA, and LRA were not affected at the early stages of endotoxic shock after LPS administration but significantly increased at the late stages. Expression levels were higher in SMA than CA and LRA and negatively correlated with the decrease in vascular reactivity. The iNOS and ET-1 inhibitors, aminoguanidine (20 mg/kg) and PD-142893 (0.02 mg/kg), respectively, induced significant improvements in vascular reactivity and organ perfusion and stabilized the hemodynamic parameters in rabbits subjected to endotoxic shock. CONCLUSION Changes in vascular reactivity during endotoxic shock are organ-specific. Differential expression patterns of iNOS and ET-1 in different blood vessels contribute to the organ specificity of vascular reactivity. LEVEL OF EVIDENCE Therapeutic study, level II.

Keywords: organ specific; changes vascular; vascular reactivity; reactivity; endotoxic shock

Journal Title: Journal of Trauma and Acute Care Surgery
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.