LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lyophilized plasma resuscitation downregulates inflammatory gene expression in a mouse model of sepsis

Photo from wikipedia

A mouse model of cecal slurry-induced sepsis was used to evaluate lyophilized plasma (LP) as an initial resuscitation fluid. LP downregulated pulmonary inflammatory gene signaling pathways but did not affect… Click to show full abstract

A mouse model of cecal slurry-induced sepsis was used to evaluate lyophilized plasma (LP) as an initial resuscitation fluid. LP downregulated pulmonary inflammatory gene signaling pathways but did not affect mortality or other physiologic endpoints. BACKGROUND Plasma resuscitation may improve outcomes by targeting endotheliopathy induced by severe sepsis or septic shock. Given the logistical constraints of using fresh frozen plasma in military settings or areas with prolonged prehospital care, dried products such as lyophilized plasma (LP) have been developed. We hypothesized that resuscitation with LP would decrease lung injury, inflammation, and mortality in a mouse sepsis model. METHODS Adult male C57BL/6J mice received an intraperitoneal injection of cecal slurry. Twenty-two hours later, the mice were anesthetized, the femoral artery was cannulated, and the mice were randomized to receive resuscitation with LP (10 mL/kg) or lactated Ringer's (LR; 30 mL/kg) for 1 hour. At 48-hours post–cecal slurry injection, bronchoalveolar lavage fluid was collected, the lungs were harvested, and plasma was obtained. Mortality and bronchoalveolar lavage total protein concentration (as an indicator of permeability) were compared between groups. The lungs were analyzed for histopathology and inflammatory gene expression using NanoString, and the plasma was analyzed for biomarkers of inflammation and endothelial function. RESULTS There was no significant difference in short-term mortality between LR and LP mice, 38% versus 47%, respectively (p = 0.62). Bronchoalveolar lavage protein levels were similar among mice resuscitated with LR or LP, and there was a lack of significant histopathologic lung injury in all groups. However, LP resuscitation resulted in downregulation of pulmonary inflammatory genes, including signaling pathways such as Janus kinase-signal transducer and activator of transcription and nuclear factor κB, and a circulating inflammatory biomarker profile similar to sham animals. CONCLUSION Resuscitation with LP did not improve mortality or reduce permeability or injury in this model compared with LR. However, LP downregulated pulmonary inflammatory gene signaling and may also reduce circulating biomarkers of inflammation. Future studies should evaluate LP resuscitation in combination with antibiotics and other therapeutics to determine whether the anti-inflammatory effects of LP may improve outcomes in sepsis.

Keywords: sepsis; lyophilized plasma; inflammatory gene; model; resuscitation

Journal Title: Journal of Trauma and Acute Care Surgery
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.