LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Machine learning and murine models explain failures of clinical sepsis trials

Photo from wikipedia

All sepsis is not the same. There are differences in the inflammatory responses that result from intra-abdominal sepsis and gram-negative pneumonia models. HAT is beneficial in intra-abdominal sepsis but not… Click to show full abstract

All sepsis is not the same. There are differences in the inflammatory responses that result from intra-abdominal sepsis and gram-negative pneumonia models. HAT is beneficial in intra-abdominal sepsis but not in the pulmonary sepsis model. BACKGROUND Multiple clinical trials failed to demonstrate the efficacy of hydrocortisone, ascorbic acid, and thiamine (HAT) in sepsis. These trials were dominated by patients with pulmonary sepsis and have not accounted for differences in the inflammatory responses across varying etiologies of injury/illness. Hydrocortisone, ascorbic acid, and thiamine have previously revealed tremendous benefits in animal peritonitis sepsis models (cecal ligation and puncture [CLP]) in contradiction to the various clinical trials. The impact of HAT remains unclear in pulmonary sepsis. Our objective was to investigate the impact of HAT in pneumonia, consistent with the predominate etiology in the discordant clinical trials. We hypothesized that, in a pulmonary sepsis model, HAT would act synergistically to reduce end-organ dysfunction by the altering the inflammatory response, in a unique manner compared with CLP. METHODS Using Pseudomonas aeruginosa pneumonia, a pulmonary sepsis model (pneumonia [PNA]) was compared directly to previously investigated intra-abdominal sepsis models. Machine learning applied to early vital signs stratified animals into those predicted to die (pDie) versus predicted to live (pLive). Animals were then randomized to receive antibiotics and fluids (vehicle [VEH]) vs. HAT). Vitals, cytokines, vitamin C, and markers of liver and kidney function were assessed in the blood, bronchoalveolar lavage, and organ homogenates. RESULTS PNA was induced in 119 outbred wild-type Institute of Cancer Research mice (predicted mortality approximately 50%) similar to CLP. In PNA, interleukin 1 receptor antagonist in 72-hour bronchoalveolar lavage was lower with HAT (2.36 ng/mL) compared with VEH (4.88 ng/mL; p = 0.04). The remaining inflammatory cytokines and markers of liver/renal function showed no significant difference with HAT in PNA. PNA vitamin C levels were 0.62 mg/dL (pDie HAT), lower than vitamin C levels after CLP (1.195 mg/dL). Unlike CLP, PNA mice did not develop acute kidney injury (blood urea nitrogen: pDie, 33.5 mg/dL vs. pLive, 27.6 mg/dL; p = 0.17). Furthermore, following PNA, HAT did not significantly reduce microscopic renal oxidative stress (mean gray area: pDie, 16.64 vs. pLive, 6.88; p = 0.93). Unlike CLP where HAT demonstrated a survival benefit, HAT had no impact on survival in PNA. CONCLUSION Hydrocortisone, ascorbic acid, and thiamine therapy has minimal benefits in pneumonia. The inflammatory response induced by pulmonary sepsis is unique compared with the response during intra-abdominal sepsis. Consequently, different etiologies of sepsis respond differently to HAT therapy.

Keywords: sepsis; abdominal sepsis; sepsis trials; pna; pulmonary sepsis; intra abdominal

Journal Title: Journal of Trauma and Acute Care Surgery
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.