Objective Repetitive peripheral magnetic stimulation (rPMS) combined with motor imagery facilitates the corticospinal excitability of the agonist muscles. However, the effects of rPMS combined with motor imagery on the corticospinal… Click to show full abstract
Objective Repetitive peripheral magnetic stimulation (rPMS) combined with motor imagery facilitates the corticospinal excitability of the agonist muscles. However, the effects of rPMS combined with motor imagery on the corticospinal excitability of the antagonist muscles are unclear. This is an important aspect for applying rPMS in neurorehabilitation for sensorimotor dysfunction. Therefore, we investigated the real-time changes of corticospinal excitability of antagonist muscles during rPMS combined with motor imagery. Methods Fourteen healthy volunteers underwent four different experimental conditions: rest, rPMS, motor imagery, and rPMS combined with motor imagery (rPMS + motor imagery). In the rPMS and rPMS + motor imagery conditions, rPMS (25 Hz, 1600 ms/train, 1.5× of the motor threshold) was delivered to the dorsal side of the forearm. In motor imagery and rPMS + motor imagery, the participant imagined wrist extension movements. Transcranial magnetic stimulation was delivered to record motor-evoked potentials of the antagonist muscle during experimental interventions. Results The motor-evoked potential (normalized by rest condition) values indicated no difference between rPMS, motor imagery, and rPMS + motor imagery. Conclusion These results suggest that rPMS combined with motor imagery has no effect on the corticospinal excitability of the antagonist muscles and highlight the importance of investigating the effects of rPMS combined with motor imagery at the spinal level.
               
Click one of the above tabs to view related content.