LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Minor environmental concentrations of antibiotics can modify bacterial virulence in co-infection with a non-targeted parasite

Photo from wikipedia

Leakage of medical residues into the environment can significantly impact natural communities. For example, antibiotic contamination from agriculture and aquaculture can directly influence targeted pathogens, but also other non-targeted taxa… Click to show full abstract

Leakage of medical residues into the environment can significantly impact natural communities. For example, antibiotic contamination from agriculture and aquaculture can directly influence targeted pathogens, but also other non-targeted taxa of commensals and parasites that regularly co-occur and co-infect the same host. Consequently, antibiotics could significantly alter interspecific interactions and epidemiology of the co-infecting parasite community. We studied how minor environmental concentrations of antibiotic affects the co-infection of two parasites, the bacterium Flavobacterium columnare and the fluke Diplostomum pseudospathaceum, in their fish host. We found that antibiotic in feed, and particularly the minute concentration in water, significantly decreased bacterial virulence and changed the infection success of the flukes. These effects depended on the level of antibiotic resistance of the bacterial strains. Antibiotic, however, did not compensate for the higher virulence of co-infections. Our results demonstrate that even very low environmental concentrations of antibiotic can influence ecology and epidemiology of diseases in co-infection with non-targeted parasites. Leakage of antibiotics into the environment may thus have more complex effects on disease ecology than previously anticipated.

Keywords: environmental concentrations; virulence; infection; epidemiology; non targeted; ecology

Journal Title: Biology Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.