Disease virulence may be strongly influenced by social interactions among pathogens, both during the time course of an infection and evolutionarily. Here, we examine how spiteful bacteriocin production in the… Click to show full abstract
Disease virulence may be strongly influenced by social interactions among pathogens, both during the time course of an infection and evolutionarily. Here, we examine how spiteful bacteriocin production in the insect-pathogenic bacterium Xenorhabdus nematophila is evolutionarily linked to its virulence. We expected a negative correlation between virulence and spite owing to their inverse correlations with growth. We examined bacteriocin production and growth across 14 experimentally evolved lineages that show faster host-killing relative to their ancestral population. Consistent with expectations, these more virulent lineages showed reduced bacteriocin production and faster growth relative to the ancestor. Further, bacteriocin production was negatively correlated with growth across the examined lineages. These results strongly support an evolutionary trade-off between virulence and bacteriocin production and lend credence to the view that disease management can be improved by exploiting pathogen social interactions.
               
Click one of the above tabs to view related content.