LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A multi-tasking stomach: functional coexistence of acid–peptic digestion and defensive body inflation in three distantly related vertebrate lineages

Photo by louiscesar from unsplash

Puffer and porcupine fishes (families Diodontidae and Tetraodontidae, order Tetradontiformes) are known for their extraordinary ability to triple their body size by swallowing and retaining large amounts of seawater in… Click to show full abstract

Puffer and porcupine fishes (families Diodontidae and Tetraodontidae, order Tetradontiformes) are known for their extraordinary ability to triple their body size by swallowing and retaining large amounts of seawater in their accommodating stomachs. This inflation mechanism provides a defence to predation; however, it is associated with the secondary loss of the stomach's digestive function. Ingestion of alkaline seawater during inflation would make acidification inefficient (a potential driver for the loss of gastric digestion), paralleled by the loss of acid–peptic genes. We tested the hypothesis of stomach inflation as a driver for the convergent evolution of stomach loss by investigating the gastric phenotype and genotype of four distantly related stomach inflating gnathostomes: sargassum fish, swellshark, bearded goby and the pygmy leatherjacket. Strikingly, unlike in the puffer/porcupine fishes, we found no evidence for the loss of stomach function in sargassum fish, swellshark and bearded goby. Only the pygmy leatherjacket (Monochanthidae, Tetraodontiformes) lacked the gastric phenotype and genotype. In conclusion, ingestion of seawater for inflation, associated with loss of gastric acid secretion, is restricted to the Tetraodontiformes and is not a selective pressure for gastric loss in other reported gastric inflating fishes.

Keywords: body; stomach; loss; acid peptic; inflation; distantly related

Journal Title: Biology Letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.