Reports of programmed cell death (PCD) in phytoplankton raise questions about the ecological evolutionary role of cell death in these organisms. We induced PCD by nitrogen deprivation and unregulated cell… Click to show full abstract
Reports of programmed cell death (PCD) in phytoplankton raise questions about the ecological evolutionary role of cell death in these organisms. We induced PCD by nitrogen deprivation and unregulated cell death (non-PCD) in one strain of the green microalga Ankistrodesmus densus and investigated the effects of the cell death supernatants on phylogenetically related co-occurring organisms using growth rates and maximum biomass as proxies of fitness. PCD-released materials from A. densus CCMA-UFSCar-3 significantly increased growth rates of two conspecific strains compared to healthy culture (HC) supernatants and improved the maximum biomass of all A. densus strains compared to related species. Although growth rates of non-A. densus with PCD supernatants were not statistically different from HC treatment, biomass gain was significantly reduced. Thus, the organic substances released by PCD, possibly nitrogenous compounds, could promote conspecific growth. These results support the argument that PCD may differentiate species or subtypes and increases inclusive fitness in this model unicellular chlorophyte. Further research, however, is needed to identify the responsible molecules and how they interact with cells to provide the PCD benefits.
               
Click one of the above tabs to view related content.