The fluid mechanical processes that govern the spread of infectious agents through the air in complex spaces are reviewed and the scientific gaps and challenges identified and discussed. Air, expelled… Click to show full abstract
The fluid mechanical processes that govern the spread of infectious agents through the air in complex spaces are reviewed and the scientific gaps and challenges identified and discussed. Air, expelled from the nose and mouth, creates turbulent jets that form loosely coherent structures which quickly slow. For the transport and dispersion of aerosols, the suitability of the Eulerian as well as the Lagrangian approaches are brought into context. The effects of buoyancy and external turbulence are explored and shown to influence the horizontal extent of expulsion through distinct mechanisms which both inhibit penetration and enhance mixing. The general influence of inhomogeneous turbulence and stratification on the spread of infectious agents in enclosed complex spaces is discussed.
               
Click one of the above tabs to view related content.